news 2024
« BACK
Materials Science
Results 1 - 14 of 14.
Chemistry - Materials Science - 28.11.2024
New Hybrid Catalyst for Clean Oxygen Production
A research team at the Institute of Materials Chemistry at TU Wien, led by Professor Dominik Eder, has developed a new synthetic approach to create durable, conductive and catalytically active hybrid framework materials for (photo)electrocatalytic water splitting. Porous metal-organic framework catalysts The development of technologies for sustainable energy carriers, such as hydrogen, is essential.
Physics - Materials Science - 24.10.2024
Superconductivity: the mystery of Fermi arcs solved
In certain materials, electrical charge can only move in very specific directions. Researchers at TU Wien (Vienna) have now shown that this can be explained by magnetic effects. High-temperature superconductivity is one of the great mysteries of modern physics: some materials conduct electrical current without any resistance - but only at very low temperatures.
Chemistry - Materials Science - 12.09.2024
The insulator unraveled
Scientists at the TU Wien and the University of Vienna have uncovered the detailed structure of the aluminum oxide surface, a challenge that has baffled researchers for decades. Aluminum oxide (Al2O3), also known as alumina, corundum, sapphire, or ruby, is one of the best insulators used in a wide range of applications: in electronic components, as a support material for catalysts, or as a chemically resistant ceramic, to name a few.
Materials Science - Innovation - 28.08.2024
Alternatives in Car and Aircraft Construction: New Joining and Additive Manufacturing Processes Allow Adhesive-Free Joining of Wood and Metal
Using 3D printing technology and ultrasonic joining technique, researchers at TU Graz succeeded in attaining an extremely strong joining of the renewable raw material wood with metal and polymer composite. The renewable raw material wood is climate-neutral and at the same time light and strong, making it fundamentally attractive for use in vehicle manufacturing.
Materials Science - Physics - 21.08.2024
Dormant Capacity Reserve in Lithium-Ion Batteries Detected
Batteries undercut their theoretical capacity in practice, sometimes significantly. In a lithium iron phosphate cathode, researchers at TU Graz have now been able to observe exactly where the capacity loss occurs. Lithium iron phosphate is one of the most important materials for batteries in electric cars, stationary energy storage systems and tools.
Materials Science - Physics - 13.06.2024
Customised Thermal Radiation
Normally, thermal radiation is a product of randomness, described by the laws of statistical physics. TU Wien and the University of Manchester show that it can also be controlled. When a piece of metal is made to glow, its colour depends solely on its temperature. The material, the geometry, the structure of its surface - none of these details matters.
Materials Science - 06.05.2024
Materials scientists are researching improvements to implants
A team of materials scientists at the University of Leoben is working on improving medical implants with the help of additive manufacturing. Their research work was recently published in the journal "Advanced Functional Materials". Dipl.-Ing. Sepide Hadibeik, Dr. Florian Spieckermann and Jürgen Eckert from the Department of Materials Science at the University of Leoben, in cooperation with the Swiss Advanced Manufacturing Center in Biel, have used an advanced process for the additive manufacturing of metallic glasses for the first time.
Materials Science - Environment - 24.04.2024
Nanofibers rid water of hazardous dyes
Dyes, such as those used in the textile industry, are a major environmental problem. At TU Wien, efficient filters have now been developed - based on cellulose waste. Using waste to purify water may sound counterintuitive. But at TU Wien, this is exactly what has now been achieved: a special nanostructure has been developed to filter a widespread class of harmful dyes from water.
Physics - Materials Science - 21.03.2024
New Method for Analysing Nanoporous Materials
Using only a single electron microscope image, researchers at TU Graz can determine the type and exact position of so-called guest atoms in high-tech materials. They also come closer to solving the mystery of the blue colour of aquamarine. In addition to their main components, the properties of crystalline and nanoporous materials often depend crucially on guest atoms or ions that are embedded in the tiny pores of their lattice structure.
Innovation - Materials Science - 21.03.2024
World’s first high-resolution brain developed by 3D printer
In a joint project between MedUni Vienna and TU Wien, the world's first 3D-printed "brain phantom" has been developed, which is modelled on the structure of brain fibres and can be imaged using a special variant of magnetic resonance imaging (dMRI). As a scientific team led by MedUni Vienna and TU Wien has now shown in a study, these brain models can be used to advance research into neurodegenerative diseases such as Alzheimer's, Parkinson's and multiple sclerosis.
Materials Science - 06.03.2024
Mystery of Curling Paper Solved
Paper printed on one side starts to curl with a delay of up to a few days. Researchers at TU Graz have discovered that this is due to solvents in the ink that over time migrate towards the unprinted side of the paper. Although mankind has been using paper for at least 2000 years, it still presents us with one or two mysteries.
Materials Science - Physics - 27.02.2024
TU Graz Develops Innovative Coating against Ice
The material delays the formation of ice crystals and reduces the adhesion of ice layers. Thanks to an innovative production method, the coating is very robust and adheres to numerous surfaces. Ice-repellent coatings have been around for some time, but until now they have been very sensitive and detach quite quickly from the surfaces they are meant to protect.
Materials Science - Innovation - 12.02.2024
Artificial cartilage with the help of 3D printing
A new approach to producing artificial tissue has been developed at TU Wien: Cells are grown in microstructures created in a 3D printer. Is it possible to grow tissue in the laboratory, for example to replace injured cartilage? At TU Wien (Vienna), an important step has now been taken towards creating replacement tissue in the lab - using a technique that differs significantly from other methods used around the world.
Materials Science - Physics - 17.01.2024
TU Graz Researchers Optimize 3D Printing of Optically Active Nanostructures
The shape, size and optical properties of 3-dimensional nanostructures can now be simulated in advance before they are produced directly with high precision on a wide variety of surfaces. For around 20 years, it has been possible to modify surfaces via nanoparticles so that they concentrate or manipulate light in the desired way or trigger other reactions.
Advert