« BACK

Materials Science



Results 1 - 7 of 7.


Physics - Materials Science - 14.11.2019
New Material Breaks World Record Turning Heat into Electricity
New Material Breaks World Record Turning Heat into Electricity
A new type of material generates electrical current very efficiently from temperature differences. This allows sensors and small processors to supply themselves with energy wirelessly. Thermoelectric materials can convert heat into electrical energy. This is due to the so-called Seebeck effect: If there is a temperature difference between the two ends of such a material, electrical voltage can be generated and current can start to flow.

Materials Science - Chemistry - 21.10.2019
Bioprinting: Living cells in a 3D printer
Bioprinting: Living cells in a 3D printer
With a new process developed at TU Wien (Vienna), living cells can be integrated into fine structures created in a 3D printer - extremely fast and with very high resolution. Tissue growth and the behavior of cells can be controlled and investigated particularly well by embedding the cells in a delicate 3D framework.

Physics - Materials Science - 15.10.2019
Solving the Mystery of Quantum Light in Thin Layers
Solving the Mystery of Quantum Light in Thin Layers
A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna). It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to glow in a highly unusual fashion.

Physics - Materials Science - 13.08.2019
How do atoms vibrate in graphene nanostructures?
How do atoms vibrate in graphene nanostructures?
Innovative new electron spectroscopy technique pushes the limits of Nanospectroscopy for materials design In order to understand advanced materials like graphene nanostructures and optimize them for devices in nano-, optoand quantum-technology it is crucial to understand how phonons - the vibration of atoms in solids - influence the materials' properties.

Physics - Materials Science - 01.08.2019
From Japanese basket weaving art to nanotechnology with ion beams
From Japanese basket weaving art to nanotechnology with ion beams
Ultradense arrays of magnetic quanta in high-temperature superconductors The properties of high-temperature superconductors can be tailored by the introduction of artificial defects. An international research team around physicist Wolfgang Lang at the University of Vienna has succeeded in producing the world's densest complex nano arrays for anchoring flux quanta, the fluxons.

Physics - Materials Science - 25.06.2019
New findings could lead to cheaper solar cells
New findings could lead to cheaper solar cells
Effective atomic interactions in complex materials picked up by on-the-fly machine-learning At the atomic scale materials can show a rich palette of dynamic behaviour, which directly affects the physical properties of these materials. For many years, it has been a dream to describe these dynamics in complex materials at various temperatures using computer simulations.

Materials Science - Chemistry - 13.12.2018
For a longer battery life: Pushing lithium ion batteries to the next performance level
For a longer battery life: Pushing lithium ion batteries to the next performance level
Conventional lithium ion batteries, such as those widely used in smartphones and notebooks, have reached performance limits. Materials chemist Freddy Kleitz from the Faculty of Chemistry of the University of Vienna and international scientists have developed a new nanostructured anode material for lithium ion batteries, which extends the capacity and cycle life of the batteries.

This site uses cookies and analysis tools to improve the usability of the site. More information. |