Asteroseismologie zur Altersbestimmung von Sternen

Sterne werden durch den Kollaps von Molekülwolken geboren. In den frühen Phasen der Sternentwicklung ziehen sich die jungen Sterne zusammen und werden dabei immer kleiner, kompakter und heißer, bis es in ihrem Inneren heiß genug ist, dass das Wasserstoffbrennen im Kern gezündet werden kann. Das ist quasi das Ende der Kindheit und Jugend von Sternen. Wie kann man jedoch das genaue Alter und den Entwicklungszustand junger Sterne bestimmen? In einer Publikation im renommierten Journal "Science" zeigt eine internationale ForscherInnengruppe um Konstanze Zwintz gemeinsam mit Rainer Kuschnig und Werner Weiss von der Universität Wien, dass es einen direkten Zusammenhang zwischen den beobachteten Schwingungen junger Sterne und ihrem Alter gibt.

In unserem Universum sind in der Vergangenheit unzählige Male Sterne entstanden und werden immer noch geboren. Die ersten Phasen im Leben der Sterne bestimmen ihr gesamtes zukünftiges Schicksal bis hin zu ihrem Tod. "Es ist daher wesentlich, dass wir die physikalischen Prozesse in ihren frühen Phasen verstehen", erklärt die Astrophysikerin Konstanze Zwintz. Aber obwohl wir ein allgemeines Bild davon haben, wie Sterne entstehen und sich entwickeln, weist das Wissen über die frühe Sternentwicklung große Lücken auf. Zu den vielen ungelösten Fragen gehört unter anderem die Bestimmung ihres Alters und ihres relativen Entwicklungszustands.

Die Kinderstube der Sterne
Junge Sterne mit Massen von etwa einer bis zu sechs Sonnenmassen haben ähnliche Eigenschaften in ihren Atmosphären wie ältere, weiter entwickelte Sterne, die schon im Kern Wasserstoff verbrennen. "Es ist daher nicht möglich, den Entwicklungszustand eines beliebigen Sterns ausschließlich aufgrund von Eigenschaften wie seiner effektiven Temperatur, Schwerebeschleunigung oder Leuchtkraft zu bestimmen", so die Wissenschaftlerin. Der Hauptunterschied zwischen Sternen unterschiedlicher Entwicklungszustände ist ihr innerer Aufbau. Asteroseismologie ist die einzige Methode, die es erlaubt, das Innere pulsierender Sterne durch die Analyse ihrer Sternschwingungen zu untersuchen. Das funktioniert ähnlich wie auf der Erde, wo ForscherInnen aufgrund des Studiums von Erdbeben wissen, wie das Innere unserer Erde aufgebaut ist.

Jüngere Sterne schwingen langsamer

Theoretiker hatten vorhergesagt, dass man Asteroseismologie dazu verwenden könnte, den Entwicklungszustand eines Sterns zu bestimmen. Es fehlten allerdings bisher entsprechende Beobachtungsdaten, um diese Hypothese zu überprüfen. In der neuen "Science"-Publikation zeigen Zwintz und ihr Team das erste Mal, dass die beobachteten Schwingungseigenschaften junger Sterne tatsächlich von ihrem jeweiligen Entwicklungszustand abhängen: Die am wenigsten entwickelten jungen Sterne schwingen am langsamsten, während die am weitest entwickelten (d.h. kurz vor dem Beginn des Wasserstoffbrennens im Kern) die kürzesten Perioden zeigen. "Das wird es erlauben, das Alter junger Sterne nur aus ihren gemessenen Schwingungseigenschaften abzuleiten, ohne Zuhilfenahme theoretischer Modelle", freut sich die Astronomin: "Damit haben wir gezeigt, dass Asteroseismologie auch eine unschlagbare Methode ist, einige der offenen Fragen im Gebiet der frühen Sternentwicklung zu beantworten".

Sterne in allen Entwicklungsstadien können viele verschiedene Arten von Schwingungen zeigen, die aufgrund unterschiedlicher Mechanismen entstehen. Dass auch junge Sterne schwingen können, ist erst seit rund 20 Jahren bekannt. Als Konstanze Zwintz im Jahr 2000 ihr Doktorat an der Universität Wien begann, war Asteroseismologie junger Sterne ein ganz neues Gebiet, über das noch nicht viel bekannt war. Seit dieser Zeit hat sich Zwintz intensiv diesem Forschungsgebiet gewidmet - auch in ihren zwei Forschungsprojekten an der Universität Wien (2007 bis 2012). Seit knapp zwei Jahren arbeitet sie nun an der KU Leuven (Belgien), hat aber in Zusammenarbeit mit ihren Kollegen Rainer Kuschnig und Werner Weiss vom Institut für Astrophysik der Universität Wien die Forschungsarbeit zum Thema fortgeführt.

MOST, CoRoT und Daten von ESO-Teleskopen
Die Daten zu der jetzt veröffentlichten Studie in "Science" wurden zu einem Großteil durch die beiden Satelliten MOST und CoRoT und einigen Observatorien auf der Erde aufgenommen. Der kanadische Mikro-Satellit MOST (Microvariability and Oscillations of STars) wurde vor über 11 Jahren gestartet, ist nur so groß wie ein Koffer und hat über all die Jahre immer wieder junge Sterne vermessen. Am Dach des Instituts für Astrophysik der Universität Wien gibt es seit 2003 eine Bodenstation, die täglich mit MOST kommuniziert, um seine neuen Daten auf die Erde zu senden.

Die Hauptaufgabe des im Dezember 2006 gestarteten europäischen Satelliten CoRoT (Convection, Rotation and Planetary Transits) war es, Planeten in anderen Sonnensystemen zu entdecken und die Schwingungen älterer Sterne zu untersuchen. CoRoT hat im Juni 2013 seinen Dienst eingestellt. Der zweite Teil der Daten - hochaufgelöste Spektren der Sterne - wurde an Observatorien auf der Erde aufgenommen, unter anderem mit dem Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO).

This site uses cookies and analysis tools to improve the usability of the site. More information. |